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Source Separation and Beamforming Background: “s"{",.;‘;'.;‘c[f%

Overview —
1. Overview
2. Signal Separation
3. Non-adaptive beamforming
4. Adaptive signal processing for beamforming
5. Application of linear algebra to array problems
6. More adaptive signal processing for beamforming
7. Blind source separation
8. Summary
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Signal Separation

» Signal separation requires two components:

Input Signals

Filter

Output Signal

Calculate
Parameters

Universityof

)
Strathclyde

Engineering

» A parametrised
mechanism to separate
the signals (a “filter”)

» A means to select the
parameters

» Performance limited by
‘optimum’ filter

» Conventionally we have two “filter” mechanisms:

» Temporal filter — separate by frequency
> Spatial filter (aka beamformer) — separate by AOA

> We will focus on narrowband beamforming in this talk

» Broadband beamforming requires a space-time filter
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Signal Separation Strathclyde

Engineering

P> Parameter selection — the interesting part

» Three cases:
» Non-adaptive — we know everything about the scenario
> “Adaptive” — we don't know everything
> “Blind" — we don't know anything (sort of)

» Important parameters:
> AOA of signals
» Array calibration
> Noise statistics
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-

Non-Adaptive Source Separation Strathclyde

Engineering

» Covered in talk by Prof. Weiss
‘ & » Beamformer weights via

o [ constrained optimisation
( '\ (offline)

» Gain towards wanted

W\ ann signal = 1
| \/W |(l M/ \[ > Gain towards other
il I8

Array Response (dBs)
| |

signals = 0

_ ; » Noise gain as small as
ot s dorem possible
» Lots of good optimisation algorithms
(DSP text books e.g. Rabiner & Gold - Temporal filters but
basically the same for beamforming)

» Only (N —1) nulls
» Spatially distributed noise can’t be removed
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Adaptive Source Separation Strathclyde

>

>

)

Engineering

Aka adaptive beamforming

Assume the known parameters are:

> AOA of the wanted signal(s)
» Array calibration

Beamformer weights via constrained optimisation but online this
time

Gain towards wanted signal = 1
Minimise energy of output

NB. Could use an AOA algorithm here and fixed beamforming but
computationally costly
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Adaptive Source Separation g"{",;‘;'.;‘c[f%

Engineering

» Beamformer weights: w

» Sensor data at time n: x(n)

» Output at time n: y(n) = wix(n)

» Energy in output: J = Zﬁ[:_ol ly(n)|? = ||wXXH w]||3
» Data matrix: X = [x(0),x(1),...,x(N —1)]

» Constraint: wHa(f) =1

» Sample covariance matrix: R = XX#
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Minimum Variance Distortionless Response %"E".;‘{'ﬁ‘c{,?e

Engineering
(MVDR)

» Minimum Variance := Minimise energy of output

» Distortionless Response := Gain towards wanted signal = 1
>
R a(0)
wW=—"
af(§)R-1a(d)

MVDR Beam Pattern - 1 Jammer

» Gain towards wanted signal = 1

» Small gain (null) towards other
signal

 Gain (4B)

> Noise gain not controlled
In fact adapted to that particular
noise realization

% o0 ES 0 »
Azimuth angle (degrees)
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Minimum Variance Distortionless Response Sirathclyde

gineering
(MVDR)

» Multiple noise realizations (blocks of data)

9/34



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

Minimum Variance Distortionless Response srm‘;ﬁ’c{%
(MVDR) _

> Stabilisation procedures: there are many different ways of
reducing the effects of adapting to the noise realizations.

> All effectively try to ‘remove’ influence of noise
» Diagonal loading

w = Arg Min (|[w" (R + puI) w||3) st.w/a(g) = 1

» Noise subspace manipulation
Average noise subspace eigenvalues

» Penalty Function Method
w = Arg Min (||WHRW||% + K||w — W()H%)

“Soft” constraint make adapted beam pattern lie close to the
desired pattern.
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. &)
Linear Algebra %"E“ri’iﬁ'c{%

| 4
>
4

Engineering

MVDR weight vector depends on covariance matrix R
This matrix has structure
Hermitian (symmetric)

RY = (xx")" = xxXH =R

We can use linear algebra to study / manipulate the covariance
matrix

Eigenvalue decomposition of Hermitian matrix
M = UAU”Y
Eigenvectors: U is a unitary matrix
vfu=1

Eigenvalues: A is diagonal, all elements are > 0
Rank of M is number of non-zero eigenvalues
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Eigenvalue Decomposition “s";‘;;‘;i';‘d‘}ﬁ

Engineering

P> Eigenvectors are not steering vectors X = AS

Beam Patterns,

Beam Patiems N

sy 0

ML A o
B
o SRR

Signal 1
Signal 1

0
. o Y Signal 2
Signal 2

2 signals with power ratio

2 I ignal
equal power signals 10:1

» Scatter plot
» Covariance matrix EVD

> Eigenvectors approximately steering vectors when powers are
dissimilar
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Eigenvalue Decomposition “s"{",;‘;'.;‘c[f%

Engineering

» Consider two signals
X =a(by)s] +a(f)st + N
» Covariance matrix

R = XX7 = ADAX + 521

A=[a(0) at)] D:[Pgl 122]

» ADAZX is rank two. EVD:

ADAHzU[AOA S}UH

» Covariance matrix EVD

Aa O

R:U[ o

}UH+02I:U[AA+U2I : }UH

0 o2l

13/34



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

Universityof T

Eigenvalue Spectrum Strathclyde

Engineering

» Eigenvalue spectrum
Aa + o2
o’I

Eigen-spectrum

'Signal' Eigenvalues

» Two large eigenvalues
"t o { P five noise realizations

'Noise' Eigenvalues
‘ » Noise eigenvalues not equal —
1L \ finite data

Eigenvalue amplitude (logarithmic)
5

Index
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Signal and Noise Subspaces g"{",;‘;'.;‘c[f%

Engineering

» Covariance matrix EVD

AA—I—UQI 0

H
0 o3I U

R=U

> Partition eigenvectors
U= [ U; U, ]
» Orthogonal subspaces
U, U, =1 U0, =0
» Covariance matrix EVD

R =U; (As +0%) Uy + Uy (0%1) Up"
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Rotation Matrices %"?‘.—Z‘Fﬁ‘c[f%

Engineering

> Eigenvectors: U is a unitary matrix
vfu=1

» Can be considered as a rotation in N-dimensional space
» 2-D case (Givens rotations)

o e | [ )= 15

X X

» Can build N-D rotation from 2-D ones

I 0 0 0 0

0 cos(f) 0O sin(f) 0O
U=[]..|0 0 I 0 0]..[]

0 —sin(f)* 0 cos(d) O

0 0 0 1
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-

Singular Value Decomposition Strathclyde

Engineering

> Not all matrices of interest are Hermitian
» Singular value decomposition of a matrix M: N rows & M
columns
M =UxzV#
UisNxN,YXYisNxM,and Vis M x M
Singular vectors: U and V are unitary matrices
Singular values: X is diagonal, all elements are > 0
Rank of M is number of non-zero singular values
Relation to EVD

vVvyyvyy

R = MM = Uxvivzu”? = ux?u?
Eigenvalues are the square of the singular values
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Stabilized MVDR Beamformer A

Engineering

» Recall basic MVDR beamformer suffers from weight jitter

> Average noise eigenvalues

18/34



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

Array Calibration Errors “s"{",;‘;'.;‘c[f%

Engineering

» MVDR minimises power in output signal.
» w = (0 would do this
P> ‘Look direction’ constraint protects the wanted signal

wila(9) =1

» What if a(f) is incorrect?

> Wanted signal looks like an unwanted one!

» Add extra constraints

» More that one ‘Look direction’ constraint
» Flatten main lobe — gradient constraint
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Linearly Constrained Minimum Variance
(LCMV)

» Minimum Variance = Minimise energy of output
> Linearly Constrained = More than one constraint

wiC =g’

» Solution )
w=R'C(C'R™!C) g

LCMV Beam Pattern - 9 Jammers

) ‘ » Gain in wanted direction = 1
) (\ » Gain towards other directions = 0

Azimuth angle (degrees)

Gain (dB)
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Linearly Constrained Minimum Variance Strathelyde
Engineering
(LCMV)

» LCMV is a constrained minimisation problem
w = Arg Min (||WHRW||%) stwlC=g?
» If there are M constraints, M components of w are effectively
fixed

» Thus only N — M ‘degrees of freedom’ in the choice of w
i.e. can only null out N — M signals

» Thus have to have N — M >0

» Sometimes the constraints can be linearly dependent or nearly so
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Linearly Constrained Minimum Variance

(LCMV)
Consider
wiC=g”
or
WHC - gT] = [w, 1] [ S ] -
Take SVD

[wh, -1 UsvH =0
V' is full rank so
(Wi, —1]UE =0

If N — R singular values are small

(Wi, —1] U151 =0

Let U121 = [ g(; } then wHC = g’ and C only has R columns

& ? &
Universityof x

Strathclyde

Engineering
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Linearly Constrained Minimum Variance Strathelyde
Engineering
(LCMV)

Beam Pattens.

o
AOA (degrees)

Singular Value Spectrum

vVvyyvyy

Beam patterns
black - 9 Constraints
blue - 6 Constraints

Beam patterns similar
at constraint points

Constraint matrix
singular value spectrum

3 small singular values
6 constraints ~ 9
constraints
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Universityof %

Linearly Constrained Minimum Variance Strathelyde
(LCMV) _

MS HH ’
02

Beam Pattems.

> Beam patterns
» black - 9 Constraints
» blue - 6 Constraints

10 o —d

10
AOA (degress)

» Constraints not achieved due to non-zero singular values

» Threshold on singular values should be set by acceptable ‘null’
gain
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. :
Blind Source Separation ??g?ﬁc{%

Engineering

» What if we don't know AOA of one signal and array calibratio

» Recall that
X=AS+N

» Covariance matrix
R = XX” = ADA" 1 51
Assume that D = I . If not redefine array manifold A so that
A « AD:

> SVD of A
A =UxVH

» Covariance matrix EVD

XX =U [2VIVE + 021 U = U [2* + 21| UY
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Blind Source Separation

> Let X=X +o] )
XX =ux?uf

» But
X =AS+N =UZVIS+ N
» Thus
UX == xVFHs + UIN
SO

»UfX = VS + ST1UHN

assuming X! exists!
i.e.
Y=2"'UX =VIS+ N

where N = 31UH N is a noise term

&8
Universityof ‘X

Strathclyde

Engineering
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Blind Source Separation S
[ E—
» We have _
Y =VHiS+ N
» so0 S could be extracted from Y if we knew VH

» Then
S=(v=lufh)x
» cf. bank of beamformers

W1H

>
Il

: X
WNH

» Blind signal separation is limited by what a bank of beamformers
can do e.g. N sensors — N — 1 nulls
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Blind Source Separation i i

Engineering

» How to estimate VH?
NB
YY? == VHSSHV + 0?52
but SSH =T so
YY? ==+ 05?272
i.e. the second order statistics of Y will not help us estimate V7
» Can however use higher order statistics

» Can also use nonlinear cost function
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Blind Source Separation “s"{':.;‘;'.;‘c[i%

Engineering

> E.g. ‘FastlCA’ - iteration to minimise ‘negentropy’
J(Y)=H (Ygauss) — H(Y)

» Y Ggauss 1S Gaussian data with same covariance matrix as Y,
H (Y) is the entropy of Y

1Y) =~ [ rl) logloy (v)dy
» |teration
Vilk+1) =G (Vi(k)AX)Y - G (Vi(k)X) V,(k)

G (v) = tanh(av), vexp(—v?/2),or v3
where 1 < a <2
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Blind Source Separation Strathclyde

Engineering

» Higher order statistics
> Statistical independence P(z,y) = P(z)P(y)
» Scatter diagram

Dependent Signals Independent Signais
0 0
0 0
0 0 o
0 0
T, T,
@» @»
o o
o 04
0 0
0 o

o o
signal 1 signal 1

» Calculate rotation to align scatter plot with axes
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Blind Source Separation g".;‘;;‘;'.;'d‘yde
Engineering
» Estimating the ‘hidden’ rotation matrix
Y =VAS + N
» Loop through all pairs of signals
P> Rotate to align with axes
P> Repeat until rotation angle is below a threshold
QnQn-1.-Q1Y =S

ie. J(S) <ebut J(S)=0s0S~S

» Can show that S is S up to scaling and permutation of the signal

order
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Blind Source Separation

signal 1 signal 2 signal 3
1.5 3 3
@ 01) 2 2
© L 1 1
5 os I“““ “l l U\ 0 0
@ 3 -1 -1
1.5 2 2
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
< 15 1.5 8
© 1 1
Q o5 0.5 0.5
2 0.8 0 0g
5 1 0.5 3
D 15 o -1.5
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
®
©
53 i 2
()
B! 8 .
z 0 05 1
z -1 A 2
Q-2 1.5 -3
© 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
o o 1 1
Y 0 0
(SR -1 -1
o L -2 -2
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time Time Time

» 3 signals,3 sensors, SNR = 20dB, MVDR as benchmark
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Blind Source Separation smmd;,ﬁ

Engineering

» Need more data to calculate higher-order statistics

signal 1 signal 2 signal 3
1.5 3 3
o 1 2 2
< 05 1 A
5 2 o 0
71 'Dﬁ’ 1 -1
e -2 =2
0 20 40 60 80 100 0 20 40 60 80 100 0O 20 40 60 80 100
= 1.5 15 15
= 1 1 1
= 05 0.5 s
5
2 o o -0.5
T -0.5 -0.5 1
B3 A -1.5
0 20 40 60 80 100 0O 20 40 60 80 100 0O 20 40 60 80 100
4 1.5 1
1 o
05 3
2 2
o2 -3
-1.5 -4
40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
- 8 3 3
= 2 2
3 0(5) 1 1
< -05 0 o
Q -1 -1
S
=S s 2 2
0 20 40 60 80 100 0O 20 40 60 80 100 0O 20 40 60 80 100
Time Time Time

» Previous plot: 1000 data samples, This plot: 100 data samples
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)
Summary glrr;mclyde
Engineering
> Signal Separation: filter and parameters
Performance limited by ‘optimum’ filter
» Non-adaptive beamforming
Good optimisation algorithms
» Adaptive signal processing for beamforming
Constrain direction of main beam, reduce everything else
Weight jitter, calibration errors
Lots of linear algebra
» Blind source separation Higher-order statistics or nonlinear
optimisation
Lots of data needed
» Acknowledgment: John Mather (QinetiQ).
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